Abstract
AbstractAlthough defects in intracellular calcium homeostasis are known to play a role in the pathogenesis of Parkinson’s disease (PD), the underlying molecular mechanisms remain unclear. Here, we show that loss of PTEN-induced kinase 1 (PINK1) and Parkin leads to dysregulation of inositol 1,4,5-trisphosphate receptor (IP3R) activity, robustly increasing ER calcium release. In addition, we identify that CDGSH iron sulfur domain 1 (CISD1, also known as mitoNEET) functions downstream of Parkin to directly control IP3R. Both genetic and pharmacologic suppression of CISD1 and its Drosophila homolog CISD (also known as Dosmit) restore the increased ER calcium release in PINK1 and Parkin null mammalian cells and flies, respectively, demonstrating the evolutionarily conserved regulatory mechanism of intracellular calcium homeostasis by the PINK1-Parkin pathway. More importantly, suppression of CISD in PINK1 and Parkin null flies rescues PD-related phenotypes including defective locomotor activity and dopaminergic neuronal degeneration. Based on these data, we propose that the regulation of ER calcium release by PINK1 and Parkin through CISD1 and IP3R is a feasible target for treating PD pathogenesis.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference96 articles.
1. Khaliq, Z. M. & Bean, B. P. Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J. Neurosci. 30, 7401–7413 (2010).
2. Surmeier, D. J. Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol. 6, 933–938 (2007).
3. Zaichick, S. V., McGrath, K. M. & Caraveo, G. The role of Ca(2+) signaling in Parkinson’s disease. Dis. Model Mech. 10, 519–535 (2017).
4. Huang, E. et al. PINK1-mediated phosphorylation of LETM1 regulates mitochondrial calcium transport and protects neurons against mitochondrial stress. Nat. Commun. 8, 1399 (2017).
5. Kostic, M. et al. PKA phosphorylation of NCLX reverses mitochondrial calcium overload and depolarization, promoting survival of PINK1-deficient dopaminergic neurons. Cell Rep. 13, 376–386 (2015).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献