Europium in plagioclase-hosted melt inclusions reveals mantle melting modulates oxygen fugacity

Author:

Dygert NicholasORCID,Ustunisik Gokce K.,Nielsen Roger L.

Abstract

AbstractTo gain insights into the composition and heterogeneity of Earth’s interior, the partial pressure of oxygen (oxygen fugacity, or fO2) in igneous rocks is characterized. A surprising observation is that relative to reference buffers, fO2s of mantle melts (mid-ocean ridge basalts, or MORBs) and their presumed mantle sources (abyssal peridotites) differ. Globally, MORBs have near-uniform fO2s, whereas abyssal peridotites vary by about three orders of magnitude, suggesting these intimately related geologic reservoirs are out of equilibrium. Here, we characterize fO2s of mantle melting increments represented by plagioclase-hosted melt inclusions, which were entrapped as basaltic melts migrated from their sources toward the seafloor. At temperatures and fO2s constrained by rare earth element distributions, a range of fO2s consistent with the abyssal peridotites is recovered. The fO2s are correlated with geochemical proxies for mantle melting, suggesting partial melting of Earth’s mantle decreases its fO2, and that the uniformity of MORB fO2s is a consequence of the melting process and plate tectonic cycling.

Funder

Larry and Dawn Taylor Chair at the University of Tennessee

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3