A global meta-analysis on the effects of organic and inorganic fertilization on grasslands and croplands

Author:

Shi Ting-Shuai,Collins Scott L.ORCID,Yu KailiangORCID,Peñuelas JosepORCID,Sardans JordiORCID,Li Hailing,Ye Jian-ShengORCID

Abstract

AbstractA central role for nature-based solution is to identify optimal management practices to address environmental challenges, including carbon sequestration and biodiversity conservation. Inorganic fertilization increases plant aboveground biomass but often causes a tradeoff with plant diversity loss. It remains unclear, however, whether organic fertilization, as a potential nature-based solution, could alter this tradeoff by increasing aboveground biomass without plant diversity loss. Here we compile data from 537 experiments on organic and inorganic fertilization across grasslands and croplands worldwide to evaluate the responses of aboveground biomass, plant diversity, and soil organic carbon (SOC). Both organic and inorganic fertilization increase aboveground biomass by 56% and 42% relative to ambient, respectively. However, only inorganic fertilization decreases plant diversity, while organic fertilization increases plant diversity in grasslands with greater soil water content. Moreover, organic fertilization increases SOC in grasslands by 19% and 15% relative to ambient and inorganic fertilization, respectively. The positive effect of organic fertilization on SOC increases with increasing mean annual temperature in grasslands, a pattern not observed in croplands. Collectively, our findings highlight organic fertilization as a potential nature-based solution that can increase two ecosystem services of grasslands, forage production, and soil carbon storage, without a tradeoff in plant diversity loss.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3