Abstract
AbstractPlasmas are an indispensable materials engineering tool due to their unique ability to deliver a flux of species and energy to a surface. This energy flux serves to heat the surface out of thermal equilibrium with bulk material, thus enabling local physicochemical processes that can be harnessed for material manipulation. However, to-date, there have been no reports on the direct measurement of the localized, transient thermal response of a material surface exposed to a plasma. Here, we use time-resolved optical thermometry in-situ to show that the energy flux from a pulsed plasma serves to both heat and transiently cool the material surface. To identify potential mechanisms for this ‘plasma cooling,’ we employ time-resolved plasma diagnostics to correlate the photon and charged particle flux with the thermal response of the material. The results indicate photon-stimulated desorption of adsorbates from the surface is the most likely mechanism responsible for this plasma cooling.
Funder
United States Department of Defense | United States Navy | U.S. Naval Research Laboratory
United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research
Naval Research Base Laboratory program
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献