Abstract
AbstractNotwithstanding the central biological role of the (6-4) photoadduct in the induction of skin cancer by sunlight, crucial mechanistic details about its formation have evaded characterization despite efforts spanning more than half a century. 4-Thiothymidine (4tT) has been widely used as an important model system to study its mechanism of formation, but the excited-state precursor, the intermediate species, and the time scale leading to the formation of the (6-4) photoadduct have remained elusive. Herein, steady-state and time-resolved spectroscopic techniques are combined with new and reported quantum-chemical calculations to demonstrate the excited state leading to the formation of the thietane intermediate, its rate, and the formation of the (6-4) photoadduct using the 5’-TT(4tT)T(4tT)TT-3’ DNA oligonucleotide. Efficient, sub-1 ps intersystem crossing leads to the population of a triplet minimum of the thietane intermediate in as short as 3 ps, which intersystem crosses to its ground state and rearranges to form the (6-4) photoadduct.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference66 articles.
1. Cadet, J., Mouret, S., Ravanat, J. L. & Douki, T. Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem. Photobiol. 88, 1048–1065 (2012).
2. Schreier, W. J., Gilch, P. & Zinth, W. Early events of DNA photodamage. Annu. Rev. Phys. Chem. 66, 497–519 (2015).
3. Cadet, J. & Vigny, P. in Bioorganic Photochemistry, Vol. 1 (ed. Morrison, H.) 1–272 (Wiley‐Interscience, 1990).
4. Ruzsicska, B. P. & Lemaire, D. G. E. in CRC Handbook of Organic Photochemistry and Photobiology (eds. Horspool, W. M. & Song, P.-S.) 1289–1317 (CRC Press, 1995).
5. Ravanat, J.-L., Douki, T. & Cadet, J. Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol. B 63, 88–102 (2001).
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献