Abstract
AbstractDeep intracontinental earthquakes are poorly understood, despite their potential to cause significant destruction. Although lower crustal strength is currently a topic of debate, dry lower continental crust may be strong under high-grade conditions. Such strength could enable earthquake slip at high differential stress within a predominantly viscous regime, but requires further documentation in nature. Here, we analyse geological observations of seismic structures in exhumed lower crustal rocks. A granulite facies shear zone network dissects an anorthosite intrusion in Lofoten, northern Norway, and separates relatively undeformed, microcracked blocks of anorthosite. In these blocks, pristine pseudotachylytes decorate fault sets that link adjacent or intersecting shear zones. These fossil seismogenic faults are rarely >15 m in length, yet record single-event displacements of tens of centimetres, a slip/length ratio that implies >1 GPa stress drops. These pseudotachylytes represent direct identification of earthquake nucleation as a transient consequence of ongoing, localised aseismic creep.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献