Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets

Author:

Madakumbura Gavin D.ORCID,Thackeray Chad W.ORCID,Norris JesseORCID,Goldenson NaomiORCID,Hall AlexORCID

Abstract

Abstract The intensification of extreme precipitation under anthropogenic forcing is robustly projected by global climate models, but highly challenging to detect in the observational record. Large internal variability distorts this anthropogenic signal. Models produce diverse magnitudes of precipitation response to anthropogenic forcing, largely due to differing schemes for parameterizing subgrid-scale processes. Meanwhile, multiple global observational datasets of daily precipitation exist, developed using varying techniques and inhomogeneously sampled data in space and time. Previous attempts to detect human influence on extreme precipitation have not incorporated model uncertainty, and have been limited to specific regions and observational datasets. Using machine learning methods that can account for these uncertainties and capable of identifying the time evolution of the spatial patterns, we find a physically interpretable anthropogenic signal that is detectable in all global observational datasets. Machine learning efficiently generates multiple lines of evidence supporting detection of an anthropogenic signal in global extreme precipitation.

Funder

Regional and Global Model Analysis Program for the Office of Science of the U.S. Department of Energy through the Program for Climate Model Diagnosis and Intercomparison

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Reference85 articles.

1. Handmer, J. et al. Changes in impacts of climate extremes: human systems and ecosystems. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 231–290 (Cambridge University Press, 2012).

2. Crimmins, A. et al. The impacts of climate change on human health in the United States: a scientific assessment. Washington, DC: US Global Change Research Program. https://doi.org/10.7930/J0R49NQX (2016).

3. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

4. O’Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

5. Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorological Soc. 84, 1205–1218 (2003).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3