SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis

Author:

Aktekin BurakORCID,Riegger Luise M.,Otto Svenja-K.,Fuchs Till,Henss Anja,Janek JürgenORCID

Abstract

AbstractLithium-metal batteries with a solid electrolyte separator are promising for advanced battery applications, however, most electrolytes show parasitic side reactions at the low potential of lithium metal. Therefore, it is essential to understand how much (and how fast) charge is consumed in these parasitic reactions. In this study, a new electrochemical method is presented for the characterization of electrolyte side reactions occurring on active metal electrode surfaces. The viability of this new method is demonstrated in a so-called anode-free stainless steel ∣ Li6PS5Cl ∣ Li cell. The method also holds promise for investigating dendritic lithium growth (and dead lithium formation), as well as for analyzing various electrolytes and current collectors. The experimental setup allows easy electrode removal for post-mortem analysis, and the SEI’s heterogeneous/layered microstructure is revealed through complementary analytical techniques. We expect this method to become a valuable tool in the future for solid-state lithium metal batteries and potentially other cell chemistries.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3