Abstract
AbstractThe mysterious Planckian metal state, showing perfect T-linear resistivity associated with universal scattering rate, 1/τ = αkBT/ℏ with α ~ 1, has been observed in the normal state of various strongly correlated superconductors close to a quantum critical point. However, its microscopic origin and link to quantum criticality remains an outstanding open problem. Here, we observe quantum-critical T/B-scaling of the Planckian metal state in resistivity and heat capacity of heavy-electron superconductor Ce1−xNdxCoIn5 in magnetic fields near the edge of antiferromagnetism at the critical doping xc ~ 0.03. We present clear experimental evidences of Kondo hybridization being quantum critical at xc. We provide a generic microscopic mechanism to qualitatively account for this quantum critical Planckian state within the quasi-two dimensional Kondo-Heisenberg lattice model near Kondo breakdown transition. We find α is a non-universal constant and depends inversely on the square of Kondo hybridization strength.
Funder
U.S. Department of Energy
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献