Abstract
AbstractThe practical application of room-temperature Na-S batteries is hindered by the low sulfur utilization, inadequate rate capability and poor cycling performance. To circumvent these issues, here, we propose an electrocatalyst composite material comprising of N-doped nanocarbon and Fe3N. The multilayered porous network of the carbon accommodates large amounts of sulfur, decreases the detrimental effect of volume expansion, and stabilizes the electrodes structure during cycling. Experimental and theoretical results testify the Fe3N affinity to sodium polysulfides via Na-N and Fe-S bonds, leading to strong adsorption and fast dissociation of sodium polysulfides. With a sulfur content of 85 wt.%, the positive electrode tested at room-temperature in non-aqueous Na metal coin cell configuration delivers a reversible capacity of about 1165 mA h g−1 at 167.5 mA g−1, satisfactory rate capability and stable capacity of about 696 mA h g−1 for 2800 cycles at 8375 mA g−1.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献