Abstract
AbstractMagnetization promoted activity of magnetic catalysts towards the oxygen evolution reaction (OER) has attracted great attention, but remains a puzzle where the increment comes from. Magnetization of a ferromagnetic material only changes its magnetic domain structure. It does not directly change the spin orientation of unpaired electrons in the material. The confusion is that each magnetic domain is a small magnet and theoretically the spin-polarization promoted OER already occurs on these magnetic domains, and thus the enhancement should have been achieved without magnetization. Here, we demonstrate that the enhancement comes from the disappeared domain wall upon magnetization. Magnetization leads to the evolution of the magnetic domain structure, from a multi-domain one to a single domain one, in which the domain wall disappears. The surface occupied by the domain wall is reformatted into one by a single domain, on which the OER follows the spin-facilitated pathways and thus the overall increment on the electrode occurs. This study fills the missing gap for understanding the spin-polarized OER and it further explains the type of ferromagnetic catalysts which can give increment by magnetization.
Funder
Singapore Ministry of Education
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献