Coordinated inflammatory responses dictate Marburg virus control by reservoir bats

Author:

Guito Jonathan C.,Kirejczyk Shannon G. M.,Schuh Amy J.ORCID,Amman Brian R.ORCID,Sealy Tara K.,Graziano James,Spengler Jessica R.ORCID,Harmon Jessica R.ORCID,Wozniak David M.,Prescott Joseph B.ORCID,Towner Jonathan S.ORCID

Abstract

AbstractBats are increasingly recognized as reservoirs of emerging zoonotic pathogens. Egyptian rousette bats (ERBs) are the known reservoir of Marburg virus (MARV), a filovirus that causes deadly Marburg virus disease (MVD) in humans. However, ERBs harbor MARV asymptomatically, likely due to a coadapted and specific host immunity-pathogen relationship. Recently, we measured transcriptional responses in MARV-infected ERB whole tissues, showing that these bats possess a disease tolerant strategy that limits pro-inflammatory gene induction, presumably averting MVD-linked immunopathology. However, the host resistant strategy by which ERBs actively limit MARV burden remains elusive, which we hypothesize requires localized inflammatory responses unresolvable at bulk-tissue scale. Here, we use dexamethasone to attenuate ERB pro-inflammatory responses and assess MARV replication, shedding and disease. We show that MARV-infected ERBs naturally mount coordinated pro-inflammatory responses at liver foci of infection, comprised of recruited mononuclear phagocytes and T cells, the latter of which proliferate with likely MARV-specificity. When pro-inflammatory responses are diminished, ERBs display heightened MARV replication, oral/rectal shedding and severe MVD-like liver pathology, demonstrating that ERBs balance immunoprotective tolerance with discreet MARV-resistant pro-inflammatory responses. These data further suggest that natural ERB immunomodulatory stressors like food scarcity and habitat disruption may potentiate viral shedding, transmission and therefore outbreak risk.

Funder

U.S. Department of Health & Human Services | Centers for Disease Control and Prevention

Robert Koch Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3