Scaling behavior of electron decoherence in a graphene Mach-Zehnder interferometer

Author:

Jo M.,Lee June-Young M.ORCID,Assouline A.,Brasseur P.,Watanabe K.ORCID,Taniguchi T.ORCID,Roche P.ORCID,Glattli D. C.ORCID,Kumada N.ORCID,Parmentier F. D.ORCID,Sim H. -S.ORCID,Roulleau P.ORCID

Abstract

AbstractOver the past 20 years, many efforts have been made to understand and control decoherence in 2D electron systems. In particular, several types of electronic interferometers have been considered in GaAs heterostructures, in order to protect the interfering electrons from decoherence. Nevertheless, it is now understood that several intrinsic decoherence sources fundamentally limit more advanced quantum manipulations. Here, we show that graphene offers a unique possibility to reach a regime where the decoherence is frozen and to study unexplored regimes of electron interferometry. We probe the decoherence of electron channels in a graphene quantum Hall PN junction, forming a Mach-Zehnder interferometer1,2, and unveil a scaling behavior of decay of the interference visibility with the temperature scaled by the interferometer length. It exhibits a remarkable crossover from an exponential decay at higher temperature to an algebraic decay at lower temperature where almost no decoherence occurs, a regime previously unobserved in GaAs interferometers.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dissipation and dephasing in quantum Hall interferometers;Physical Review B;2024-08-07

2. Electron wave and quantum optics in graphene;Journal of Physics: Condensed Matter;2024-07-01

3. Emission and coherent control of Levitons in graphene;Science;2023-12-15

4. Edge channels in a graphene Fabry-Pérot interferometer;Physical Review B;2023-06-26

5. Mach–Zehnder-like interferometry with graphene nanoribbon networks;Journal of Physics: Condensed Matter;2023-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3