Abstract
AbstractCurrent polyamide lithium extraction nanofiltration membranes are susceptible to chlorine degradation and/or low permeance, two problems that are hard to reconcile. Here we simultaneously circumvented these problems by designing a quaternized-spiro piperazine monomer and translating its beneficial properties into large-area membranes (1 × 2 m2) via interfacial polymerization with trimesoyl chloride. The quaternary ammonium and spiral conformation of the monomer confer more positive charge and free volume to the membrane, leading to one of the highest permeance (~22 L m−2 h−1 bar−1) compared to the state-of-the-art Mg2+/Li+ nanofiltration membranes. Meanwhile, membrane structures are chlorine resistant as the amine–acyl bonding contains no sensitive N-H group. Thus the high performance of membrane is stable versus 400-h immersion in sodium hypochlorite, while control membranes degraded readily. Molecular simulations show that the high permeance and chlorine resistance, which were reproducible at the membrane module level, arise from the spiral conformation and secondary amine structures of the monomer.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献