Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet

Author:

Wu HanORCID,Chen Lei,Malinowski PaulORCID,Jang Bo Gyu,Deng QinwenORCID,Scott Kirsty,Huang JianweiORCID,Ruff Jacob P. C.,He YuORCID,Chen Xiang,Hu ChaoweiORCID,Yue Ziqin,Oh Ji Seop,Teng XiaokunORCID,Guo Yucheng,Klemm Mason,Shi ChuqiaoORCID,Shi YueORCID,Setty Chandan,Werner Tyler,Hashimoto MakotoORCID,Lu DonghuiORCID,Yilmaz Turgut,Vescovo Elio,Mo Sung-KwanORCID,Fedorov AlexeiORCID,Denlinger Jonathan D.ORCID,Xie YaofengORCID,Gao BinORCID,Kono JunichiroORCID,Dai Pengcheng,Han YimoORCID,Xu XiaodongORCID,Birgeneau Robert J.ORCID,Zhu Jian-XinORCID,da Silva Neto Eduardo H.ORCID,Wu Liang,Chu Jiun-HawORCID,Si QimiaoORCID,Yi MingORCID

Abstract

AbstractNon-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe5−δGeTe2. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.

Funder

DOE | Advanced Research Projects Agency - Energy

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3