Abstract
AbstractPyroclastic density currents (PDCs) are the most lethal volcanic process on Earth. Forecasting their inundation area is essential to mitigate their risk, but existing models are limited by our poor understanding of their dynamics. Here, we explore the role of evolving grain-size distribution in controlling the runout of the most common PDCs, known as block-and-ash flows (BAFs). Through a combination of theory, analysis of deposits and experiments of natural mixtures, we show that rapid changes of the grain-size distribution transported in BAFs result in the reduction of pore volume (compaction) within the first kilometres of their runout. We then use a multiphase flow model to show how the compressibility of granular mixtures leads to fragmentation-induced fluidisation (FIF) and excess pore-fluid pressure in BAFs. This process dominates the first ~2 km of their runout, where the effective friction coefficient is progressively reduced. Beyond that distance, transport is modulated by diffusion of the excess pore pressure. Fragmentation-induced fluidisation provides a physical basis to explain the decades-long use of low effective friction coefficients used in depth-averaged simulations required to match observed flow inundation.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献