High-resolution single-photon imaging with physics-informed deep learning

Author:

Bian Liheng,Song Haoze,Peng Lintao,Chang XuyangORCID,Yang Xi,Horstmeyer Roarke,Ye Lin,Zhu Chunli,Qin Tong,Zheng DezhiORCID,Zhang Jun

Abstract

AbstractHigh-resolution single-photon imaging remains a big challenge due to the complex hardware manufacturing craft and noise disturbances. Here, we introduce deep learning into SPAD, enabling super-resolution single-photon imaging with enhancement of bit depth and imaging quality. We first studied the complex photon flow model of SPAD electronics to accurately characterize multiple physical noise sources, and collected a real SPAD image dataset (64 × 32 pixels, 90 scenes, 10 different bit depths, 3 different illumination flux, 2790 images in total) to calibrate noise model parameters. With this physical noise model, we synthesized a large-scale realistic single-photon image dataset (image pairs of 5 different resolutions with maximum megapixels, 17250 scenes, 10 different bit depths, 3 different illumination flux, 2.6 million images in total) for subsequent network training. To tackle the severe super-resolution challenge of SPAD inputs with low bit depth, low resolution, and heavy noise, we further built a deep transformer network with a content-adaptive self-attention mechanism and gated fusion modules, which can dig global contextual features to remove multi-source noise and extract full-frequency details. We applied the technique in a series of experiments including microfluidic inspection, Fourier ptychography, and high-speed imaging. The experiments validate the technique’s state-of-the-art super-resolution SPAD imaging performance.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3