A highly proton conductive perfluorinated covalent triazine framework via low-temperature synthesis

Author:

Guan Lijiang,Guo Zhaoqi,Zhou Qi,Zhang Jin,Cheng Cheng,Wang ShengyaoORCID,Zhu Xiang,Dai ShengORCID,Jin ShangbinORCID

Abstract

AbstractProton-conducting materials are essential to the emerging hydrogen economy. Covalent triazine frameworks (CTFs) are promising proton-conducting materials at high temperatures but need more effective sites to strengthen interaction for proton carriers. However, their construction and design in a concise condition are still challenges. Herein, we show a low temperature approach to synthesize CTFs via a direct cyclotrimerization of aromatic aldehyde using ammonium iodide as facile nitrogen source. Among the CTFs, the perfluorinated CTF (CTF-TF) was successfully synthesized with much lower temperature ( ≤ 160 °C) and open-air atmosphere. Due to the additional hydrogen-bonding interaction between fluorine atoms and proton carriers (H3PO4), the CTF-TF achieves a proton conductivity of 1.82 × 10−1 S cm−1 at 150 °C after H3PO4 loading. Moreover, the CTF-TF can be readily integrated into mixed matrix membranes, displaying high proton conduction abilities and good mechanical strength. This work provides an alternative strategy for rational design of proton conducting media.

Funder

National Natural Science Foundation of China

Key Project of Natural Science Basic Research Program of Shaanxi

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3