Precise recognition of benzonitrile derivatives with supramolecular macrocycle of phosphorylated cavitand by co-crystallization method

Author:

Li HengORCID,Li Zhijin,Lin ChenORCID,Jiang JuliORCID,Wang LeyongORCID

Abstract

AbstractThe importance of molecular docking in drug discovery lies in the precise recognition between potential drug compounds and their target receptors, which is generally based on the computational method. However, it will become quite interesting if the rigid cavity structure of supramolecular macrocycles can precisely recognize a series of guests with specific fragments by mimicking molecular docking through co-crystallization experiments. Herein, we report a phenylphosphine oxide-bridged aromatic supramolecular macrocycle, F[3]A1-[P(O)Ph]3, which precisely recognizes benzonitrile derivatives through non-covalent interactions to form key-lock complexes by co-crystallization method. A total of 15 various benzonitrile derivatives as guest molecules are specifically bound by F[3]A1-[P(O)Ph]3 in co-crystal structures, respectively. Notably, among them, crisaborole (anti-dermatitis) and alectinib (anti-cancer) with the benzonitrile fragment, which are two commercial drug molecules approved by the U.S. Food and Drug Administration (FDA), could also form a key-lock complex with F[3]A1-[P(O)Ph]3 in the crystal state, respectively.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3