Shifting beams at normal incidence via controlling momentum-space geometric phases

Author:

Wang JiajunORCID,Zhao Maoxiong,Liu WenzheORCID,Guan FangORCID,Liu Xiaohan,Shi LeiORCID,Chan C. T.ORCID,Zi JianORCID

Abstract

AbstractWhen hitting interfaces between two different media, light beams may undergo small shifts. Such beam shifts cannot be described by the geometrical optics based on Snell’s law and their underlying physics has attracted much attention. Conventional beam shifts like Goos-Hänchen shifts and Imbert-Fedorov shifts not only require obliquely incident beams but also are mostly very small compared to the wavelength and waist size of the beams. Here we propose a method to realize large and controllable polarization-dependent lateral shifts for normally incident beams with photonic crystal slabs. As a proof of the concept, we engineer the momentum-space geometric phase distribution of a normally incident beam by controlling its interaction with a photonic crystal slab whose momentum-space polarization structure is designed on purpose. The engineered geometric phase distribution is designed to result in a large shift of the beam. We fabricate the designed photonic crystal slab and directly observe the beam shift, which is ~5 times the wavelength and approaches the waist radius. Based on periodic structures and only requiring simple manipulation of symmetry, our proposed method is an important step towards practical applications of beam shifting effects.

Funder

China National Key Basic Research Program

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3