Abstract
AbstractRetinotopy, like all long-range projections, can arise from the axons themselves or their targets. The underlying connectivity pattern, however, remains elusive at the fine scale in the mammalian brain. To address this question, we functionally mapped the spatial organization of the input axons and target neurons in the female mouse retinocollicular pathway at single-cell resolution using in vivo two-photon calcium imaging. We found a near-perfect retinotopic tiling of retinal ganglion cell axon terminals, with an average error below 30 μm or 2° of visual angle. The precision of retinotopy was relatively lower for local neurons in the superior colliculus. Subsequent data-driven modeling ascribed it to a low input convergence, on average 5.5 retinal ganglion cell inputs per postsynaptic cell in the superior colliculus. These results indicate that retinotopy arises largely from topographically precise input from presynaptic cells, rather than elaborating local circuitry to reconstruct the topography by postsynaptic cells.
Funder
European Molecular Biology Laboratory
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献