Abstract
AbstractMulti-mode waveguides are ubiquitously used in integrated photonics. Although interaction among different spatial waveguide eigenmodes can induce novel nonlinear phenomena, spatial mode interaction is typically undesired. Adiabatic bends, such as Euler bends, have been favoured to suppress spatial mode interaction. Here, we adapt and optimize Euler bends to build compact racetrack microresonators based on ultralow-loss, multi-mode, silicon nitride photonic integrated circuits. The racetrack microresonators feature a footprint of only 0.21 mm2 for 19.8 GHz free spectral range, suitable for tight photonic integration. We quantitatively investigate the suppression of spatial mode interaction in the racetrack microresonators with Euler bends. We show that the low optical loss rate (15.5 MHz) is preserved, on par with the mode interaction strength (25 MHz). This results in an unperturbed microresonator dispersion profile. We further generate a single dissipative Kerr soliton of 19.8 GHz repetition rate without complex laser tuning schemes or auxiliary lasers. The optimized Euler bends and racetrack microresonators can be building blocks for integrated nonlinear photonic systems, as well as linear circuits for programmable processors or photonic quantum computing.
Funder
United States Department of Defense | Defense Advanced Research Projects Agency
United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献