Superintense laser-driven photon activation analysis

Author:

Mirani FrancescoORCID,Calzolari DanieleORCID,Formenti AriannaORCID,Passoni Matteo

Abstract

AbstractLaser-driven radiation sources are attracting increasing attention for several materials science applications. While laser-driven ions, electrons and neutrons have already been considered to carry out the elemental characterization of materials, the possibility to exploit high-energy photons remains unexplored. Indeed, the electrons generated by the interaction of an ultra-intense laser pulse with a near-critical material can be turned into high-energy photons via bremsstrahlung emission when shot into a high-Z converter. These photons could be effectively exploited to perform Photon Activation Analysis (PAA). In the present work, laser-driven PAA is proposed and investigated. We develop a theoretical approach to identify the optimal experimental conditions for laser-driven PAA in a wide range of laser intensities. Lastly, exploiting the Monte Carlo and Particle-In-Cell tools, we successfully simulate PAA experiments performed with both conventional accelerators and laser-driven sources. Under high repetition rate operation (i.e. 1−10 Hz) conditions, the ultra-intense lasers can allow performing PAA with performances comparable with those achieved with conventional accelerators. Moreover, laser-driven PAA could be exploited jointly with complementary laser-driven materials characterization techniques under investigation in existing laser facilities.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3