Abstract
AbstractVarious kinds of Ising machines based on unconventional computing have recently been developed for practically important combinatorial optimization. Among them, the machines implementing a heuristic algorithm called simulated bifurcation have achieved high performance, where Hamiltonian dynamics are simulated by massively parallel processing. To further improve the performance of simulated bifurcation, here we introduce thermal fluctuation to its dynamics relying on the Nosé–Hoover method, which has been used to simulate Hamiltonian dynamics at finite temperatures. We find that a heating process in the Nosé–Hoover method can assist simulated bifurcation to escape from local minima of the Ising problem, and hence lead to improved performance. We thus propose heated simulated bifurcation and demonstrate its performance improvement by numerically solving instances of the Ising problem with up to 2000 spin variables and all-to-all connectivity. Proposed heated simulated bifurcation is expected to be accelerated by parallel processing.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference57 articles.
1. Barahona, F. On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15, 3241–3253 (1982).
2. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).
3. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998).
4. Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. Preprint at https://arxiv.org/abs/quant-ph/0001106 (2000).
5. Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–475 (2001).
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献