Visualizing plasmons and ultrafast kinetic instabilities in laser-driven solids using X-ray scattering

Author:

Ordyna PawełORCID,Bähtz CarstenORCID,Brambrink Erik,Bussmann Michael,Laso Garcia AlejandroORCID,Garten MarcoORCID,Gaus LennartORCID,Göde Sebastian,Grenzer Jörg,Gutt ChristianORCID,Höppner HaukeORCID,Huang LingenORCID,Hübner Uwe,Humphries OliverORCID,Marré Brian Edward,Metzkes-Ng Josefine,Miethlinger Thomas,Nakatsutsumi Motoaki,Öztürk ÖzgülORCID,Pan XiayunORCID,Paschke-Brühl Franziska,Pelka Alexander,Prencipe Irene,Preston Thomas R.ORCID,Randolph Lisa,Schlenvoigt Hans-PeterORCID,Schwinkendorf Jan-Patrick,Šmíd MichalORCID,Starke SebastianORCID,Štefaníková RadkaORCID,Thiessenhusen Erik,Toncian TomaORCID,Zeil KarlORCID,Schramm UlrichORCID,Cowan Thomas E.,Kluge ThomasORCID

Abstract

AbstractUltra-intense lasers that ionize atoms and accelerate electrons in solids to near the speed of light can lead to kinetic instabilities that alter the laser absorption and subsequent electron transport, isochoric heating, and ion acceleration. These instabilities can be difficult to characterize, but X-ray scattering at keV photon energies allows for their visualization with femtosecond temporal resolution on the few nanometer mesoscale. Here, we perform such experiment on laser-driven flat silicon membranes that shows the development of structure with a dominant scale of 60 nm in the plane of the laser axis and laser polarization, and 95 nm in the vertical direction with a growth rate faster than 0.1 fs−1. Combining the XFEL experiments with simulations provides a complete picture of the structural evolution of ultra-fast laser-induced plasma density development, indicating the excitation of plasmons and a filamentation instability. Particle-in-cell simulations confirm that these signals are due to an oblique two-stream filamentation instability. These findings provide new insight into ultra-fast instability and heating processes in solids under extreme conditions at the nanometer level with possible implications for laser particle acceleration, inertial confinement fusion, and laboratory astrophysics.

Funder

Massachusetts Department of Fish and Game

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3