Abstract
AbstractAperiodicity and un-conventional rotational symmetries allow quasicrystalline structures to exhibit unusual physical and functional properties. In magnetism, artificial ferromagnetic quasicrystals exhibited knee anomalies suggesting reprogrammable magnetic properties via non-stochastic switching. However, the decisive roles of short-range exchange and long-range dipolar interactions have not yet been clarified for optimized reconfigurable functionality. We report broadband spin-wave spectroscopy and X-ray photoemission electron microscopy on different quasicrystal lattices consisting of ferromagnetic Ni81Fe19nanobars arranged on aperiodic Penrose and Ammann tilings with different exchange and dipolar interactions. We imaged the magnetic states of partially reversed quasicrystals and analyzed their configurations in terms of the charge model, geometrical frustration and the formation of flux-closure loops. Only the exchange-coupled lattices are found to show aperiodicity-specific collective phenomena and non-stochastic switching. Both, exchange and dipolarly coupled quasicrystals show magnonic excitations with narrow linewidths in minor loop measurements. Thereby reconfigurable functionalities in spintronics and magnonics become realistic.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献