Abstract
AbstractThe geometric renormalization technique for complex networks has successfully revealed the multiscale self-similarity of real network topologies and can be applied to generate replicas at different length scales. Here, we extend the geometric renormalization framework to weighted networks, where the intensities of the interactions play a crucial role in their structural organization and function. Our findings demonstrate that the weighted organization of real networks exhibits multiscale self-similarity under a renormalization protocol that selects the connections with the maximum weight across increasingly longer length scales. We present a theory that elucidates this symmetry, and that sustains the selection of the maximum weight as a meaningful procedure. Based on our results, scaled-down replicas of weighted networks can be straightforwardly derived, facilitating the investigation of various size-dependent phenomena in downstream applications.
Funder
Ministry of Economy and Competitiveness | Agencia Estatal de Investigación
Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献