Photonic bandgap engineering using second-order supersymmetry

Author:

Chandra NitishORCID,Litchinitser Natalia M.

Abstract

AbstractFirst-order supersymmetry (SUSY) adapted from quantum physics to optics manipulates the transverse refractive index of guided-wave structures using a nodeless ground state to obtain intended modal content. Second-order SUSY can be implemented using excited states as a seed function, even with the presence of nodes. We apply second-order SUSY to the coupled-mode equations by recasting them as the Dirac equation. This enables the engineering of non-uniform surface corrugation of waveguide gratings and coupling potential, which encapsulates the Bragg interaction between counterpropagating modes. We show that the added bound states appear as transmission resonances inside the bandgap of the finite grating. The probability density of each state provides the longitudinal modal energy distribution in the waveguide grating. The smooth modal energy distribution of the states obtained by SUSY can mitigate longitudinal spatial hole burning in high power laser operation. We demonstrate that degenerate second-order SUSY allows the insertion of two states, which can coalesce into Friedrich-Wintgen type bound states in the continuum (BIC) for one-dimensional grating. We show that the eigenfunctions of BIC states are doubly degenerate with opposite parity, and the corresponding transmission resonances have phase changes of 2π across these states. One-dimensional BIC states can find application as robust high-speed all-optical temporal integrators by lifting restrictions on the length of various sections in the phase-shifted grating.

Funder

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3