Abstract
Abstract
Positron acceleration in plasma wakefield faces significant challenges, as the positron beam must be pre-generated and precisely coupled into the wakefield and, most critically, suffers from defocusing issues. Here we propose a scheme that utilizes laser-driven electrons to produce, inject, and accelerate positrons in a single setup. The high-charge electron beam from wakefield acceleration creates copious electron–positron pairs via the Bethe–Heitler process, followed by enormous coherent transition radiation due to the electrons’ exiting from the metallic foil. Simulation results show that the coherent transition radiation field reaches up to tens of GV m−1, which captures and accelerates the positrons to cut-off energy of 1.5 GeV with energy peak of 500 MeV (energy spread ~ 24.3%). An external longitudinal magnetic field of 30 T is also applied to guide the electrons and positrons during the acceleration process. This proposed method offers a promising way to obtain GeV fast positron sources.
Funder
Ministry of Science and Technology of the People’s Republic of China
National Natural Science Foundation of China
Strategic Priority Research Program of the Chinese Academy of Sciences (XDB16); Scientific Equipment Research Project of Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献