Abstract
AbstractQuantum systems as used for quantum computation or quantum sensing are nowadays often realized in solid state devices as e.g. complex Josephson circuits or coupled quantum-dot systems. Condensed matter as an environment influences heavily the quantum coherence of such systems. Here, we investigate electron transport through asymmetrically coupled InAs double quantum dots and observe an extremely strong temperature dependence of the coherent current peaks of single-electron tunneling. We analyze experimentally and theoretically the broadening of such coherent current peaks up to temperatures of 20K and we are able to model it with quantum dissipation being due to two different bosonic baths. These bosonic baths mainly originate from substrate phonons. Application of a magnetic field helps us to identify the different quantum dot states through their temperature dependence.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献