Abstract
AbstractDeveloping quantum machines which can outperform their classical counterparts, thereby achieving quantum supremacy or quantum advantage, is a major aim of the current research on quantum thermodynamics and quantum technologies. Here, we show that a fast-modulated cyclic quantum heat machine operating in the non-Markovian regime can lead to significant heat current and power boosts induced by the anti-Zeno effect. Such boosts signify a quantum advantage over almost all heat machines proposed thus far that operate in the conventional Markovian regime, where the quantumness of the system-bath interaction plays no role. The present effect owes its origin to the time-energy uncertainty relation in quantum mechanics, which may result in enhanced system-bath energy exchange for modulation periods shorter than the bath correlation-time.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献