Abstract
AbstractDeep brain stimulation (DBS) has emerged as a revolutionary technique for accessing and modulating brain circuits. DBS is used to treat dysfunctional neuronal circuits in neurological and psychiatric disorders. Despite over two decades of clinical application, the fundamental mechanisms underlying DBS are still not well understood. One reason is the complexity of in vivo electrical manipulation of the central nervous system, particularly in rodent models. DBS-devices for freely moving rodents are typically custom-designed and not commercially available, thus making it difficult to perform experimental DBS according to common standards. Addressing these challenges, we have developed a novel wireless microstimulation system for deep brain stimulation (wDBS) tailored for rodents. We demonstrate the efficacy of this device for the restoration of behavioral impairments in hemiparkinsonian mice through unilateral wDBS of the subthalamic nucleus. Moreover, we introduce a standardized and innovative pipeline, integrating machine learning techniques to analyze Parkinson’s disease-like and DBS-induced gait changes.
Funder
Deutsche Forschungsgemeinschaft
Stiftung VERUM
Publisher
Springer Science and Business Media LLC
Reference56 articles.
1. Benabid, A. L., Pollak, P., Louveau, A., Henry, S. & de Rougemont, J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl. Neurophysiol. 50, 344–346 (1987).
2. Gardner, J. A history of deep brain stimulation: technological innovation and the role of clinical assessment tools. Soc. Stud. Sci. 43, 707–728 (2013).
3. Miocinovic, S., Somayajula, S., Chitnis, S. & Vitek, J. L. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 70, 163–171 (2013).
4. Deuschl, G., Raethjen, J., Hellriegel, H. & Elble, R. Treatment of patients with essential tremor. Lancet Neurol. 10, 148–161 (2011).
5. Kupsch, A. et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N. Engl. J. Med. 355, 1978–1990 (2006).