Alterations in the LRRK2-Rab pathway in urinary extracellular vesicles as Parkinson’s disease and pharmacodynamic biomarkers

Author:

Taymans Jean-MarcORCID,Mutez Eugénie,Sibran William,Vandewynckel Laurine,Deldycke Claire,Bleuse Séverine,Marchand AntoineORCID,Sarchione Alessia,Leghay Coline,Kreisler Alexandre,Simonin Clémence,Koprich James,Baille Guillaume,Defebvre Luc,Dujardin KathyORCID,Destée Alain,Chartier-Harlin Marie-ChristineORCID

Abstract

AbstractExpression or phosphorylation levels of leucine-rich repeat kinase 2 (LRRK2) and its Rab substrates have strong potential as disease or pharmacodynamic biomarkers. The main objective of this study is therefore to assess the LRRK2-Rab pathway for use as biomarkers in human, non-human primate (NHP) and rat urine. With urine collected from human subjects and animals, we applied an ultracentrifugation based fractionation protocol to isolate small urinary extracellular vesicles (uEVs). We used western blot with antibodies directed against total and phosphorylated LRRK2, Rab8, and Rab10 to measure these LRRK2 and Rab epitopes in uEVs. We confirm the presence of LRRK2 and Rab8/10 in human and NHP uEVs, including total LRRK2 as well as phospho-LRRK2, phospho-Rab8 and phospho-Rab10. We also confirm LRRK2 and Rab expression in rodent uEVs. We quantified LRRK2 and Rab epitopes in human cohorts and found in a first cohort that pS1292-LRRK2 levels were elevated in individuals carrying the LRRK2 G2019S mutation, without significant differences between healthy and PD groups, whether for LRRK2 G2019S carriers or not. In a second cohort, we found that PD was associated to increased Rab8 levels and decreased pS910-LRRK2 and pS935-LRRK2. In animals, acute treatment with LRRK2 kinase inhibitors led to decreased pT73-Rab10. The identification of changes in Rab8 and LRRK2 phosphorylation at S910 and S935 heterologous phosphosites in uEVs of PD patients and pT73-Rab10 in inhibitor-dosed animals further reinforces the potential of the LRRK2-Rab pathway as a source of PD and pharmacodynamic biomarkers in uEVs.

Funder

Michael J. Fox Foundation for Parkinson’s Research

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3