Characterization of Mucosal Dysbiosis of Early Colonic Neoplasia

Author:

Hong Bo-young,Ideta Takayasu,Lemos Bruno S.,Igarashi Yuichi,Tan Yuliana,DiSiena Michael,Mo Allen,Birk John W.,Forouhar Faripour,Devers Thomas J.,Weinstock George M.ORCID,Rosenberg Daniel W.

Abstract

AbstractAberrant crypt foci (ACF) are the earliest morphologically identifiable lesions in the colon that can be detected by high-definition chromoendoscopy with contrast dye spray. Although frequently associated with synchronous adenomas, their role in colorectal tumor development, particularly in the proximal colon, is still not clear. The goal of this study was to evaluate the profile of colon-adherent bacteria associated with proximal ACF and to investigate their relationship to the presence and subtype of synchronous polyps present throughout the colon. Forty-five subjects undergoing a screening or surveillance colonoscopy were included in this retrospective study. Bacterial cells adherent to the epithelia of ACF and normal mucosal biopsies were visualized by in situ hybridization within confocal tissue sections. ACF showed significantly greater heterogeneity in their bacterial microbiome profiles compared with normal mucosa. One of the bacterial community structures we characterized was strongly correlated with the presence of synchronous polyps. Finally, using DNA mass spectrometry to evaluate a panel of colorectal cancer hotspot mutations present in the ACF, we found that threeAPCgene mutations were positively associated with the presence ofInstestinibacter sp., whereasKRASmutations were positively correlated withRuminococcus gnavus. This result indicates a potential relationship between specific colon-associated bacterial species and somatically acquired CRC-related mutations. Overall, our findings suggest that perturbations to the normal adherent mucosal flora may constitute a risk factor for early neoplasia, demonstrating the potential impact of mucosal dysbiosis on the tissue microenvironment and behavior of ACF that may facilitate their progression towards more advanced forms of neoplasia.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3