Abstract
AbstractThe helical self-assembly of cholesteric liquid crystals is a powerful motif in nature, enabling exceptional performance in many biological composites. Attempts to mimic these remarkable materials by drying cholesteric colloidal nanorod suspensions often yield films with a non-uniform mosaic-like character, severely degrading optical and mechanical properties. Here we show—using the example of cellulose nanocrystals—that these problems are due to rod length dispersity: uncontrolled phase separation results from a divergence in viscosity for short rods, and variations in pitch can be traced back to a twisting power that scales with rod length. We present a generic, robust and scalable method for fractionating nanorod suspensions, allowing us to interrogate key aspects of cholesteric self-assembly that were previously hidden by colloid dispersity. By controlled drying of fractionated suspensions, we can obtain mosaic-free films that are uniform in colour. Our findings unify conflicting observations and open routes to biomimetic artificial materials with performance that can compete with that of nature’s originals.
Funder
Fonds National de la Recherche Luxembourg
Publisher
Springer Science and Business Media LLC
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献