Author:
He Penghui,Xu Hua,Lan Linfeng,Deng Caihao,Wu Yongbo,Lin Yilong,Chen Siting,Ding Chunchun,Li Xiao,Xu Miao,Peng Junbiao
Abstract
AbstractAmorphous oxide semiconductors are promising for their use in thin-film transistor (TFT) devices due to their high carrier mobility and large-area uniformity. However, their commercialization is limited by the negative gate bias stress experienced under continuous light illumination. Here, we report an approach to improve the negative bias illumination stress (NBIS) stability of amorphous oxide semiconductors TFTs by using lanthanide-doped indium oxide semiconductors as the channel layer. The effect of different lanthanide dopants on performances of solution-processed Ln:In2O3 TFTs are investigated. All lanthanides exhibit strong suppression of oxygen vacancy, which shift the Von from −13.5 V of pure In2O3 TFT to −1~1 V of Ln:In2O3 TFTs (except Ce). However, only Pr:In2O3 and Tb:In2O3 TFTs exhibit much better NBIS stability with same ΔVon of −3.0 V, compared to much higher ΔVon of −7.9~−15.6 V for other Ln:In2O3 TFTs. Our comprehensive study reveals that praseodymium and terbium act as a blue light down-conversion medium with low charge transfer transition energy for lowing photosensitivity of oxide semiconductors.
Publisher
Springer Science and Business Media LLC
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献