Abstract
AbstractOrganic–inorganic halide perovskites are promising for use in solar cells because of their efficient solar power conversion. Current–voltage hysteresis and degradation under illumination are still issues that need to be solved for their future commercialization. However, why hysteresis and degradation occur in typical perovskite solar cell structures, with an electron transport layer of metal oxide such as SnO2, has not been well understood. Here we show that one reason for the hysteresis and degradation is because of the localization of positive ions caused by hydroxyl groups existing at the SnO2 surface. We deactivate these hydroxyl groups by treating the SnO2 surface with a self-assembled monolayer. With this surface treatment method, we demonstrate hysteresis-less and highly stable perovskite solar cells, with no degradation after 1000 h of continuous illumination.
Funder
MEXT | JST | Exploratory Research for Advanced Technology
Publisher
Springer Science and Business Media LLC
Cited by
106 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献