Arctic Oscillation and Pacific-North American pattern dominated-modulation of fire danger and wildfire occurrence

Author:

Justino FlavioORCID,Bromwich David H.,Schumacher Vanucia,daSilva AlexORCID,Wang Sheng-HungORCID

Abstract

AbstractBased on statistical analyses and Arctic Oscillation (AO) and the Pacific-North American pattern (PNA) induced climate anomalies in the 2001–2020 interval, it has been found that these climate modes drastically influence the fire danger (PFIv2) in differing ways across coastal and inland regions. The AO induces higher fire risk in northern Eurasia and central North America, whereas the PNA increases the fire danger across southern Asia and western North America. Moreover, fires have been predominantly identified, up to 70%, during the positive phases of AO and PNA northward of 50°N, in particular over Alaska, Baltic States and eastern Asia. For coincident positive AO and negative PNA days, a large number of fires have been identified over northwestern North America and northern Eurasia. Spectral analyses demonstrate that weather anomalies related to AO and PNA lead fire danger by 10–20 days, and both modes are significantly correlated to PFIv2 over north America and most of Eurasia. Despite some drawbacks related to the fire danger methods currently applied (PFI and FWI), it is demonstrated that the influence of AO and PNA on potential environmental driven-fires can be anticipated, in some locations on almost 90% of days. Fire danger forecasts are urgently needed and the understanding of factors and conditions, which are able to modify the environmental susceptibility to fire development, are crucial for adequate management to reduce the harmful effects of fire. In this sense, our results reveal that a better prediction of the fire season can be achieved by advanced assessment of the PNA and AO behavior, and shed light on the need to investigate the impact of other modes of climate variability upon wildfire frequency and severity.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3