Arctic amplification, and its seasonal migration, over a wide range of abrupt CO2 forcing

Author:

Liang Yu-ChiaoORCID,Polvani Lorenzo M.ORCID,Mitevski Ivan

Abstract

AbstractArctic amplification (AA), the larger warming of the Arctic compared to the rest of the planet, is widely attributed to the increasing concentrations of atmospheric CO2, and is caused by local and non-local mechanisms. In this study, we examine AA, and its seasonal cycle, in a sequence of abrupt CO2 forcing experiments, spanning from 1 to 8 times pre-industrial CO2 levels, using a state-of-the-art global climate model. We find that increasing CO2 concentrations give rise to stronger Arctic warming but weaker AA, owing to relatively weaker warming of the Arctic in comparison with the rest of the globe due to weaker sea-ice loss and atmosphere-ocean heat fluxes at higher CO2 levels. We further find that the seasonal peak in AA shifts gradually from November to January as CO2 increases. Finally, we show that this seasonal shift in AA emerges in the 21st century in high-CO2 emission scenario simulations. During the early-to-middle 21st century AA peaks in November–December but the peak shifts to December-January at the end of the century. Our findings highlight the role of CO2 forcing in affecting the seasonal evolution of amplified Arctic warming, which carries important ecological and socio-economic implications.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Reference88 articles.

1. Graversen, R. G., Mauritsen, T., Tjernström, M., Källén, E. & Svensson, G. Vertical structure of recent Arctic warming. Nature 451, 53–56 (2008).

2. Serreze, M., Barrett, A., Stroeve, J., Kindig, D. & Holland, M. The emergence of surface-based Arctic amplification. Cryosphere 3, 11–19 (2009).

3. Manabe, S. & Wetherald, R. T. The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci. 32, 3–15 (1975).

4. Stocker, T. et al. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).

5. Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Ch. 3 (IPCC, 2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3