Abstract
AbstractThis study investigates the possibility of Atlantic Meridional Overturning Circulation (AMOC) noise-induced tipping solely driven by internal climate variability without applying external forcing that alter the radiative forcing or the North Atlantic freshwater budget. We address this hypothesis by applying a rare event algorithm to ensemble simulations of present-day climate with an intermediate complexity climate model. The algorithm successfully identifies trajectories leading to abrupt AMOC slowdowns, which are unprecedented in a 2000-year control run. Part of these AMOC weakened states lead to collapsed state without evidence of AMOC recovery on multi-centennial time scales. The temperature and Northern Hemisphere jet stream responses to these internally-induced AMOC slowdowns show strong similarities with those found in externally forced AMOC slowdowns in state-of-the-art climate models. The AMOC slowdown seems to be initially driven by Ekman transport due to westerly wind stress anomalies in the North Atlantic and subsequently sustained by a complete collapse of the oceanic convection in the Labrador Sea. These results demonstrate that transitions to a collapsed AMOC state purely due to internal variability in a model simulation of present-day climate are rare but theoretically possible. Additionally, these results show that rare event algorithms are a tool of valuable and general interest to study tipping points since they introduce the possibility of collecting a large number of tipping events that cannot be sampled using traditional approaches. This opens the possibility of identifying the mechanisms driving tipping events in complex systems in which little a-priori knowledge is available.
Funder
EC | Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Bellomo, K., Angeloni, M., Corti, S. & von Hardenberg, J. Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun. 12, 1–10 (2021).
2. Weijer, W. et al. Stability of the atlantic meridional overturning circulation: a review and synthesis. J. Geophys. Res. Oceans 124, 5336–5375 (2019).
3. Masson-Delmotte, V. et al. Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2023).
4. Smeed, D. A. et al. The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett. 45, 1527–1533 (2018).
5. Liu, W., Fedorov, A. V., Xie, S. P. & Hu, S. Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate. Sci. Adv. 6, 1–9 (2020).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献