Enhancing property and activity prediction and interpretation using multiple molecular graph representations with MMGX

Author:

Kengkanna ApakornORCID,Ohue MasahitoORCID

Abstract

AbstractGraph Neural Networks (GNNs) excel in compound property and activity prediction, but the choice of molecular graph representations significantly influences model learning and interpretation. While atom-level molecular graphs resemble natural topology, they overlook key substructures or functional groups and their interpretation partially aligns with chemical intuition. Recent research suggests alternative representations using reduced molecular graphs to integrate higher-level chemical information and leverages both representations for model. However, there is a lack of studies about applicability and impact of different molecular graphs on model learning and interpretation. Here, we introduce MMGX (Multiple Molecular Graph eXplainable discovery), investigating the effects of multiple molecular graphs, including Atom, Pharmacophore, JunctionTree, and FunctionalGroup, on model learning and interpretation with various perspectives. Our findings indicate that multiple graphs relatively improve model performance, but in varying degrees depending on datasets. Interpretation from multiple graphs in different views provides more comprehensive features and potential substructures consistent with background knowledge. These results help to understand model decisions and offer valuable insights for subsequent tasks. The concept of multiple molecular graph representations and diverse interpretation perspectives has broad applicability across tasks, architectures, and explanation techniques, enhancing model learning and interpretation for relevant applications in drug discovery.

Funder

MEXT | Japan Science and Technology Agency

MEXT | Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3