Deep learning-enabled Inference of 3D molecular absorption distribution of biological cells from IR spectra

Author:

Magnussen Eirik AlmklovORCID,Zimmermann Boris,Blazhko Uladzislau,Dzurendova Simona,Dupuy–Galet BenjaminORCID,Byrtusova Dana,Muthreich FlorianORCID,Tafintseva Valeria,Liland Kristian Hovde,Tøndel Kristin,Shapaval Volha,Kohler Achim

Abstract

AbstractInfrared spectroscopy delivers abundant information about the chemical composition, as well as the structural and optical properties of intact samples in a non-destructive manner. We present a deep convolutional neural network which exploits all of this information and solves full-wave inverse scattering problems and thereby obtains the 3D optical, structural and chemical properties from infrared spectroscopic measurements of intact micro-samples. The proposed model encodes scatter-distorted infrared spectra and infers the distribution of the complex refractive index function of concentrically spherical samples, such as many biological cells. The approach delivers simultaneously the molecular absorption, sample morphology and effective refractive index in both the cell wall and interior from a single measured spectrum. The model is trained on simulated scatter-distorted spectra, where absorption in the distinct layers is simulated and the scatter-distorted spectra are estimated by analytic solutions of Maxwell’s equations for samples of different sizes. This allows for essentially real-time deep learning-enabled infrared diffraction micro-tomography, for a large subset of biological cells.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

Reference45 articles.

1. Wetzel, D. L. & Reffner, J. Using spatially resolved fourier transform infrared microbeam spectroscopy to examine the microstructure of wheat kernels. Cereal Foods World 38, 9–20 (1993).

2. Wetzel, D. L. & LeVine, S. M. Imaging molecular chemistry with infrared microscopy. Science 285, 1224–1225 (1999).

3. Mohlenhoff, B., Romeo, M., Diem, M. & Wood, B. Mie-type scattering and non-beer-lambert absorption behavior of human cells in infrared microspectroscopy. Biophys. J. 88 5, 3635–40 (2005).

4. van de Hulst, H. Light Scattering by Small Particles (Dover Publications, 1981).

5. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Ltd, 1998).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3