Abstract
AbstractSelective modification of the N-terminus of peptides and proteins is a promising strategy for single site modification methods. Here we report N-terminal selective modification of peptides and proteins by using 2-ethynylbenzaldehydes (2-EBA) for the production of well-defined bioconjugates. After reaction screening with a series of 2-EBA, excellent N-terminal selectivity is achieved by the reaction in slightly acidic phosphate-buffered saline using 2-EBA with electron-donating substituents. Selective modification of a library of peptides XSKFR (X = either one of 20 natural amino acids) by 2-ethynyl-4-hydroxy-5-methoxybenzaldehyde (2d) results in good-to-excellent N-terminal selectivity in peptides (up to >99:1). Lysozyme, ribonuclease A and a therapeutic recombinant Bacillus caldovelox arginase mutant (BCArg mutant) are N-terminally modified using alkyne- and fluorescein-linked 2-EBA. Alkyne-linked BCArg mutant is further modified by rhodamine azide via copper(I)-catalyzed [3 + 2] cycloaddition indicating that the reaction has high functional group compatibility. Moreover, the BCArg mutant modified by 2-ethynyl-5-methoxybenzaldehyde (2b) exhibits comparable activity in enzymatic and cytotoxic assays with the unmodified one.
Funder
Hong Kong Research Grants Council
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献