Improved detection of magnetic interactions in proteins based on long-lived coherences

Author:

Ianc Octavian,Teleanu Florin,Ciumeică AndreiORCID,Lupulescu Adonis,Sadet AudeORCID,Vasos Paul R.

Abstract

AbstractLiving systems rely on molecular building blocks with low structural symmetry. Therefore, constituent amino acids and nucleotides yield short-lived nuclear magnetic responses to electromagnetic radiation. Magnetic signals are at the basis of molecular imaging, structure determination and interaction studies. In solution state, as the molecular weight of analytes increases, coherences with long lifetimes are needed to yield advantageous through-space magnetisation transfers. Interactions between magnetic nuclei can only be detected provided the lifetimes of spin order are sufficient. In J-coupled pairs of nuclei, long-lived coherences (LLC’s) connect states with different spin-permutation symmetry. Here in, we show sustained LLC’s in protein Lysozyme, weighing 14.3 kDa, with lifetimes twice as long as those of classical magnetisation for the aliphatic protons of glycine residues. We found for the first time that, in a protein of significant molecular weight, LLC’s yield substantial through-space magnetisation transfers: spin-order transfer stemming from LLC’s overcame transfers from classical coherences by factors > 2. Furthermore, in agreement with theory, the permutation symmetry of LLC-based transfers allows mapping interacting atoms in the protein structure with respect to the molecular plane of glycine residues in a stereospecific manner. These findings can extend the scope of liquid-state high-resolution biomolecular spectroscopy.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3