Abstract
AbstractDesigning highly active and stable lead-free palladium-based catalysts without introducing surfactants and stabilizers is vital for large-scale and high-efficiency manufacturing of cis-enols via continuous-flow semi-hydrogenation of alkynols. Herein, we report an intermetallic PdZn/ZnO catalyst, designed by using the coupling strategy of strong electrostatic adsorption and reactive metal-support interaction, which can be used as a credible alternative to the commercial PdAg/Al2O3 and Lindlar catalysts. Intermetallic PdZn nanoparticles with electron-poor active sites on a Pd/ZnO catalyst significantly boost the thermodynamic selectivity with respect to the mechanistic selectivity and therefore enhance the selectivity towards cis-enols. Based on in situ diffuse reflectance infrared Fourier-transform spectra as well as simulations, we identify that the preferential adsorption of alkynol over enol on PdZn nanoparticles suppresses the over-hydrogenation of enols. These results suggest the application of fine surface engineering technology in oxide-supported metal (particles) could tune the ensemble and ligand effects of metallic active sites and achieve directional hydrogenation in fine chemical synthesis.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献