Retrosynthetic planning with experience-guided Monte Carlo tree search

Author:

Hong Siqi,Zhuo Hankz HankuiORCID,Jin Kebing,Shao Guang,Zhou Zhanwen

Abstract

AbstractIn retrosynthetic planning, the huge number of possible routes to synthesize a complex molecule using simple building blocks leads to a combinatorial explosion of possibilities. Even experienced chemists often have difficulty to select the most promising transformations. The current approaches rely on human-defined or machine-trained score functions which have limited chemical knowledge or use expensive estimation methods for guiding. Here we propose an experience-guided Monte Carlo tree search (EG-MCTS) to deal with this problem. Instead of rollout, we build an experience guidance network to learn knowledge from synthetic experiences during the search. Experiments on benchmark USPTO datasets show that, EG-MCTS gains significant improvement over state-of-the-art approaches both in efficiency and effectiveness. In a comparative experiment with the literature, our computer-generated routes mostly matched the reported routes. Routes designed for real drug compounds exhibit the effectiveness of EG-MCTS on assisting chemists performing retrosynthetic analysis.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3