A hybrid machine learning-based model for predicting flight delay through aviation big data

Author:

Dai Min

Abstract

AbstractThe prediction of flight delays is one of the important and challenging issues in the field of scheduling and planning flights by airports and airlines. Therefore, in recent years, we have witnessed various methods to solve this problem using machine learning techniques. In this article, a new method is proposed to address these issues. In the proposed method, a group of potential indicators related to flight delay is introduced, and a combination of ANOVA and the Forward Sequential Feature Selection (FSFS) algorithm is used to determine the most influential indicators on flight delays. To overcome the challenges related to large flight data volumes, a clustering strategy based on the DBSCAN algorithm is employed. In this approach, samples are clustered into similar groups, and a separate learning model is used to predict flight delays for each group. This strategy allows the problem to be decomposed into smaller sub-problems, leading to improved prediction system performance in terms of accuracy (by 2.49%) and processing speed (by 39.17%). The learning model used in each cluster is a novel structure based on a random forest, where each tree component is optimized and weighted using the Coyote Optimization Algorithm (COA). Optimizing the structure of each tree component and assigning weighted values to them results in a minimum 5.3% increase in accuracy compared to the conventional random forest model. The performance of the proposed method in predicting flight delays is tested and compared with previous research. The findings demonstrate that the proposed approach achieves an average accuracy of 97.2% which indicates a 4.7% improvement compared to previous efforts.

Funder

This work was supported by: Research on Smart Methods of Civil Aviation Regulatory Audit

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3