Scalable and CMOS compatible silicon photonic physical unclonable functions for supply chain assurance

Author:

Tarik Farhan Bin,Famili Azadeh,Lao Yingjie,Ryckman Judson D.

Abstract

AbstractWe demonstrate the uniqueness, unclonability and secure authentication of N = 56 physical unclonable functions (PUFs) realized from silicon photonic moiré quasicrystal interferometers. Compared to prior photonic-PUF demonstrations typically limited in scale to only a handful of unique devices and on the order of 10 false authentication attempts, this work examines > 103 inter-device comparisons and false authentication attempts. Device fabrication is divided across two separate fabrication facilities, allowing for cross-fab analysis and emulation of a malicious foundry with exact knowledge of the PUF photonic circuit design and process. Our analysis also compares cross-correlation based authentication to the traditional Hamming distance method and experimentally demonstrates an authentication error rate AER = 0%, false authentication rate FAR = 0%, and an estimated probability of cloning below 10−30. This work validates the potential scalability of integrated photonic-PUFs which can attractively leverage mature wafer-scale manufacturing and automated contact-free optical probing. Such structures show promise for authenticating hardware in the untrusted supply chain or augmenting conventional electronic-PUFs to enhance system security.

Funder

Air Force Office of Scientific Research

Clemson University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Silicon photonic packaging: Complexity and challenges for assurance;Materials for Electronics Security and Assurance;2024

2. Device Fingerprint as aTransmission Security Paradigm;Optoelectronics - Recent Advances [Working Title];2023-10-27

3. Security Challenges for Assurance in Silicon Photonic Packaging;2023 IEEE Research and Applications of Photonics in Defense Conference (RAPID);2023-09

4. Optical Systems Identification through Rayleigh Backscattering;Sensors;2023-06-01

5. Random fractal-enabled physical unclonable functions with dynamic AI authentication;Nature Communications;2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3