X-ray fan beam coded aperture transmission and diffraction imaging for fast material analysis

Author:

Stryker Stefan,Greenberg Joel A.,McCall Shannon J.,Kapadia Anuj J.

Abstract

AbstractX-ray transmission imaging has been used in a variety of applications for high-resolution measurements based on shape and density. Similarly, X-ray diffraction (XRD) imaging has been used widely for molecular structure-based identification of materials. Combining these X-ray methods has the potential to provide high-resolution material identification, exceeding the capabilities of either modality alone. However, XRD imaging methods have been limited in application by their long measurement times and poor spatial resolution, which has generally precluded combined, rapid measurements of X-ray transmission and diffraction. In this work, we present a novel X-ray fan beam coded aperture transmission and diffraction imaging system, developed using commercially available components, for rapid and accurate non-destructive imaging of industrial and biomedical specimens. The imaging system uses a 160 kV Bremsstrahlung X-ray source while achieving a spatial resolution of ≈ 1 × 1 mm2 and a spectral accuracy of > 95% with only 15 s exposures per 150 mm fan beam slice. Applications of this technology are reported in geological imaging, pharmaceutical inspection, and medical diagnosis. The performance of the imaging system indicates improved material differentiation relative to transmission imaging alone at scan times suitable for a variety of industrial and biomedical applications.

Funder

North Carolina Biotechnology Center

U.S. Department of Homeland Security

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-resolution x-ray diffraction imaging in a tabletop system;Anomaly Detection and Imaging with X-Rays (ADIX) IX;2024-06-07

2. Spectrum optimization for x-ray dual-mode imager comprising radiography and coherent scatter;Anomaly Detection and Imaging with X-Rays (ADIX) IX;2024-06-07

3. Resolution analysis of a volumetric coded aperture X-ray diffraction imaging system;Journal of X-Ray Science and Technology;2024-05-28

4. X-ray diffraction imaging of glioblastoma and ductal carcinoma in-situ;Medical Imaging 2024: Physics of Medical Imaging;2024-04-01

5. Towards a high-resolution volumetric x-ray diffraction imaging system for biospecimen;Medical Imaging 2024: Physics of Medical Imaging;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3