Molecular guidelines for promising antimicrobial agents

Author:

Rzycki Mateusz,Gładysiewicz-Kudrawiec Marta,Kraszewski Sebastian

Abstract

AbstractAntimicrobial resistance presents a pressing challenge to public health, which requires the search for novel antimicrobial agents. Various experimental and theoretical methods are employed to understand drug-target interactions and propose multistep solutions. Nonetheless, efficient screening of drug databases requires rapid and precise numerical analysis to validate antimicrobial efficacy. Diptool addresses this need by predicting free energy barriers and local minima for drug translocation across lipid membranes. In the current study employing Diptool free energy predictions, the thermodynamic commonalities between selected antimicrobial molecules were characterized and investigated. To this end, various clustering methods were used to identify promising groups with antimicrobial activity. Furthermore, the molecular fingerprinting and machine learning approach (ML) revealed common structural elements and physicochemical parameters in these clusters, such as long carbon chains, charged ammonium groups, and low dipole moments. This led to the establishment of guidelines for the selection of effective antimicrobial candidates based on partition coefficients (logP) and molecular mass ranges. These guidelines were implemented within the Reinforcement Learning for Structural Evolution (ReLeaSE) framework, generating new chemicals with desired properties. Interestingly, ReLeaSE produced molecules with structural profiles similar to the antimicrobial agents tested, confirming the importance of the identified features. In conclusion, this study demonstrates the ability of molecular fingerprinting and AI-driven methods to identify promising antimicrobial agents with a broad range of properties. These findings deliver substantial implications for the development of antimicrobial drugs and the ongoing battle against antibiotic-resistant bacteria.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3